modflows

methods for studying and managing mesh editing workflows

jonathan d. denning dartmouth college

ph.d. thesis defense, 2014 april 23

[hugues giboire, 2014]

hossein diba, 2012]

[orangegraphics, 2014]

study creation and editing of polygonal meshes

lots of workflows

"zbrush sculpting" yields 75k results

"blender sculpting" yields 114k results

"maya modeling" yields 180k results

hundreds to thousands of books teaching modeling

websites dedicated to

modeling and sculpting

Learn some seriously cool stuff!

3D PRODUCTION

Learn to create 3D renderings for games, film or architectural visualizations through over 232 lessons across our 3D networks.

3D Education is offered for 3D Studio Max, Blender and Modo!

medium is challenging

one-on-one / limited tutorial / interrupt, practice time-lapse / lost in details

outline

- 1. summarize workflows
- 2. workflows from meshes
- 3. compare workflows
- 4. other future work

summarize

summarize and interactively visualize workflows

meshflow 3dflow* siggraph11 sigasia14

*to be submitted

biped 1012 faces 3:10 hrs 5759 ops 1267 edits

60x

fully-automated approach to summarizing workflows

🕽 🗘 🔹 View Select Object 🖉 Object Mode 💠 🕒 🗘 🥵 🖓 🗼 🖉 📜 🖉 Global 💠 🐂 🦳 🖓 🙄 🖓 👘

helmet 1867 faces 5:05 hrs 8510 ops shark 1796 faces 3:30 hrs 8350 ops hydrant

10808 faces 2:30 hrs 4609 ops biped 1012 faces 3:10 hrs 5759 ops robot 15580 faces 9:40 hrs 13478 ops

raw seq

summarized

:	
select	
select	select
view	
view	
view	
view	view
topo	topo
trans	
trans	trans
select	select
trans	
trans	
trans	trans

top 4 bigrams

5759

cam,cam select,trans trans,select cam,select .33 select,trans .15 trans,select .11 cam,select .09 select,select 3781

22 select,trar 16 trans.selec

3 trans,cam

3 cam,select

3118

7 trans,tran 0 trans,car

5 cam,trans

4 cam,topo

184

10 trans,cam

- 26 cam,topo_a
- 25 cam,trans .

2 topo_a,trans .

summarizing by substitution regexs

- 2 (cam)+ (cam) $^{\diamond} \mapsto$ (cam) $^{\diamond}$
- 3 (view) (view)+ \mapsto (view)
- 4 (select) (view | select)* (select)^{\diamond} \mapsto (select)^{\diamond}
- 5 (select) (view)* (topo | trans)^{\diamond} \mapsto (\cdot)^{\diamond}
- 6 (trans) (view | trans)* (trans)^{\diamond} \mapsto (\cdot)^{\diamond}
- 7 $(\cdot)^{\diamond}$ (view $| (\cdot)^{\diamond}$)* $(\cdot)^{\diamond} \mapsto (\cdot)^{\diamond}$
- 8 (topo) \diamond (view | trans)* (trans) \mapsto (\cdot) \diamond
- 9 $(topo_a)^{\diamond}$ $(view \mid topo_b)*$ $(topo_b) \mapsto (\cdot)^{\diamond}$
- 10 $(\cdot)^{\diamond}$ (view $| (\cdot)^{\diamond}$)* $(\cdot)^{\diamond} \mapsto (\cdot)^{\diamond}$

levels of detail

select select view view view topo trans trans select trans trans trans	select select view topo trans select trans trans trans	select view topo trans select trans trans trans	- topo trans trans - trans trans trans	topo	- topo
0	2	4	5	6	8

Level 5

Level 9

Level 7

case study

8 college students modeling class followed tutorial

summarize

overview / details automatic highlights and annotations

from meshes

generating workflows from a set of meshes

meshgit siggraph13

del, add

exact matching

original

surface correspondence

graph match

[cour et al. 2006]

adjacency matching

meshgit

original

string edit distance / mesh edit distance

mesh edit distance min cost of partially matching meshes

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

- C_u : unmatched faces and verts
- C_g : geometric changes
- C_a : adjacency changes

O: partial matching of two meshes

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C_u(O) = N_u + N'_u$$

N : number of unmatched faces and verts

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C_g(O) = \sum_{e \in E} \left[\frac{d(\mathbf{x}_e, \mathbf{x}_{e'})}{d(\mathbf{x}_e, \mathbf{x}_{e'}) + 1} + (1 - \mathbf{n}_e \cdot \mathbf{n}_{e'}) \right]$$

E : matched faces and verts ${f x}$: position ${f n}$: normal $d({f x}_e,{f x}_{e'})=|{f x}_e-{f x}_{e'})$

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

 $C(O) = C_u(O) + C_g(O) + C_a(O)$

$$C(O) = C_u(O) + C_g(O) + C_a(O)$$

$$C_a(O) = \begin{cases} \sum_{\substack{(e_1,e_2) \in \{U,U'\}}} \frac{1}{v(e_1) + v(e_2)} & + \\ + \sum_{\substack{(e_1,e_2) \in \{A,A'\}}} \frac{w(e_1,e_2,e'_1,e'_2)}{v(e_1) + v(e_2)} & \end{cases}$$

U,U': unmatched adj pair A,A': matched adj pair $v(\cdot):$ valence $w(e_1,e_2,e_1',e_2')=rac{|d(\mathbf{x}_{e_1},\mathbf{x}_{e_2})-d(\mathbf{x}_{e_1'},\mathbf{x}_{e_2'})|}{d(\mathbf{x}_{e_1},\mathbf{x}_{e_2})+d(\mathbf{x}_{e_1'},\mathbf{x}_{e_2'})}$

$C(O) = C_u(O) + C_g(O) + C_a(O)$

min C(O) / max common subgraph isomorphism NP-Hard

iterative greedy algorithm feasibly approximate med

1. init 2. greedy 3. backtrack 4. repeat 2,3

original

1. init 2. greedy 3. backtrack 4. repeat 2,3

original

1. init 2. greedy 3. backtrack 4. repeat 2,3

original

original

mesh edit operations

low-level workflow to turn one mesh into another

delete : unmatched geometry in original

add : unmatched geometry in derivative

transform : matched vertices with geometric cost

2-way diff

visualize edits from original to derivative

original

original

3-way diff

visualize edits from original to two independent derivatives

derivative a

original

derivative a

original

mesh edit merge combining independent edits

merge is automatic if edits do not overlap on original adjacency is maintained; subdivision surfaces

merge subd

derivative a

original

derivative a

original

edit partitioning reduce granularity of conflicts

derivative a

original

from meshes

partial matching meshes low-level workflows diff and merge

compare

comparing multiple artists performing similar tasks

crosscomp* sigchi14/siggraph15

*to be submitted

digital arts instructor assigns exercise

BLENDER 2.58 - INTERNAL RENDER "HEAVYWATERS

instructor makes video tutorial by reviewing student work

instructor makes video tutorial by reviewing student work

how to help with review process?

delta (kong et al. 2012)

sifter (pavel et al. 2013)

delta: union graph

sifter: alignment view

short sequences / long sequences global change / local change polished workflows / contain errors op + params / edit effect

tasks : 3 vid tutorials, 1 target mesh subjects : 4 student modelers

correspondences

know how regions correspond to compare workflows

intra-correspondences

inter-correspondences :

- matching faces within workflow
- matching faces between workflows

intra-correspondence

intra-correspondence

inter-correspondences?

inter-correspondence

use meshgit to build inter-correspondences for final states back-propagate using intra-correspondences

inter-correspondence

spatial filtering

filtering timeline to edits on regions of interest

workflow heat map

visualize pairwise normalized mesh edit distance using built inter-correspondences

workspace

visualize workflows in 3d using isomap on med with neighborhood shaping

observations

review student input using heat map and workspace

feedback

professional artist and instructor created flashlight motivation exercise

"Based on the response we got I think the exercises have been incredibly helpful for the students. We get constant requests to do more of them. I believe they were helpful because it helps give the students some direct guidance but without hand holding. They're given a challenge but still have to find their own ways to complete that challenge. This is much more valuable than following along with a tutorial step by step. It allows them to apply the skills they learn from the tutorials."

"We'd like to do more but just haven't been able to yet. Time is the issue; too much to do. Feedback is the most difficult part. More specifically, direct and constructive feedback that helps the student know what to improve upon. One thing that would be really helpful, I think, is an automated way of reviewing all the models. For example, dumping a batch into CrossComp and then receiving an interactive playback."

embedded view made artist's mistakes clear curves hinted at the similarities of the workflows subjects on interceptor took similar approach despite not having step-by-step instructions, which was unexpected

compare

intra- and inter-correspondences pair-wise edit distance non-linear dimensionality reduction

3D Production Pipeline

PREPRODUCTION

About Open Source Targets Sharing Sp

Sponsor Vision

Q

GOOSEBERRY STUDIO LINE-UP

@ 28/01/2014 Production

When Gooseberry was announced, the shortlist of possible studio partners quickly grew to over 30... it's really great to see so many companies using Blender and be ready for film. We would love to work with all of them, but that's just not practical for a feature film. The original idea to involve "8-10" studios now already became 12.

Sponsor Prospectus

We are working on a well balanced offer to reward partners and sponsors. Contact institute@blender.org to learn more about this.

Twitter feed

Follow Gooseberry project: @gooseberry_film

extend to other evolving datasets (code repo) most unusual (levenshtein dictionary)

modflows

summarize from meshes compare

all data and source code available

collaborators and support

fabio pellacini brandon kerr jiawei ou jonathan williamson roberto roch many other artists

nsf, intel, sloan foundation

thank you!

