using monte carlo integration to solve the rendering equation dr. jon denning assistant professor of cse taylor university

frank s. brenneman lecture series

the rendering equation

computer-generated photo-realistic images are created by accurately simulating the way light interacts with the world good simulations require good modeling of lighting, materials, lenses, and the transport of light

(not photo-real example)

the rendering equation

rendering systems, such as a ray tracer or path tracer, use the rendering equation to describe how the light bounces around the virtual scene until it enters the camera's lens

$$
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho\left(\mathbf{x}, \omega_{i}, \omega_{o}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right)\left(\omega_{i} \cdot \mathbf{n}\right) d \omega_{i}
$$

the rendering equation describes the total amount of light $\left(L_{o}\right)$ leaving from a point (\mathbf{x}) along a particular direction $\left(\omega_{o}\right)$ given a function for all incoming light $\left(L_{i}\right)$ about the hemisphere (Ω) and a reflectance function (ρ)

the rendering equation

$$
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho\left(\mathbf{x}, \omega_{i}, \omega_{o}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right)\left(\omega_{i} \cdot \mathbf{n}\right) d \omega_{i}
$$

L_{e} and ρ are relatively easy to define well, and the equation is fairly straight-forward, yet the results from such a simple equation can be quite stunning

solving the rendering equation

so, how do we (efficiently) solve this?

$$
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho\left(\mathbf{x}, \omega_{i}, \omega_{o}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right)\left(\omega_{i} \cdot \mathbf{n}\right) d \omega_{i}
$$

notes:

- Ω is 2D domain (hemisphere)
- the equation is recursively defined $\left(L_{o}, L_{i}\right)$
- the function L_{i} is not well-behaved in general
- discontinuous

solving the rendering equation

so, how do we (efficiently) solve this?

$$
L_{o}\left(\mathbf{x}, \omega_{o}\right)=L_{e}\left(\mathbf{x}, \omega_{o}\right)+\int_{\Omega} \rho\left(\mathbf{x}, \omega_{i}, \omega_{o}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right)\left(\omega_{i} \cdot \mathbf{n}\right) d \omega_{i}
$$

monte carlo integration to the rescue!

note

in the interest of time, the focus of this talk is to provide intuition and motivation, not necessarily for a deeper understanding of the application of statistics or in computer graphics just sit back and enjoy

integrals and averages

integral of a function over a domain

$$
\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}
$$

"size" of a domain

$$
A_{D}=\int_{\mathbf{x} \in D} d A_{\mathbf{x}}
$$

average of a function over a domain

$$
\frac{\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}}{\int_{\mathbf{x} \in D} d A_{\mathbf{x}}}=\frac{\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}}}{A_{D}}
$$

integrals and averages examples

average "daily" snowfall in Hillsboro last year

- domain: year, time interval (1D)
- integration variable: "day" of the year
- function: snowfall of "day"

$$
\frac{\int_{\text {day } \in y e a r} s(\text { day }) \text { dlength }(d a y)}{\text { length }(\text { year })}
$$

integrals and averages examples

"today" average snowfall in Kansas

- domain: Kansas, surface (2D)
- integration variable: "location" in Kansas
- function: snowfall of "location"

$$
\frac{\left.\int_{\text {location } \in \text { Kansas }} s(\text { location }) \text { darea(location }\right)}{\text { area(location) }}
$$

integrals and averages examples

"average" snowfall in Kansas per day this year

- domain: Kansas \times year, area \times time (3D)
- integration variables: "location" and "day" in Kansas this year
- function: snowfall of "location" and "day"

$$
\frac{\int_{\text {day } \in y e a r ~} \int_{l o c \in K S} s(l o c, \text { day }) \text { darea }(l o c) \text { dlength }(\text { day })}{\operatorname{area}(l o c) \text { length }(\text { day })}
$$

discrete random variable

- random variable: x
- values: $x_{0}, x_{1}, \ldots, x_{n}$
- probabilities: $p_{0}, p_{1}, \ldots, p_{n}$, where $\sum_{j=1}^{n} p_{j}=1$
- example: rolling a die
- values: $x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4, x_{5}=5, x_{6}=6$
- probabilities: $p_{1}=p_{2}=p_{3}=p_{4}=p_{5}=p_{6}=\frac{1}{6}$

expected value and variance

- expected value: $E[x]=\sum_{j=1}^{n} v_{j} p_{j}$
- average value of the variable
- variance: $\sigma^{2}[x]=E\left[(x-E[x])^{2}\right]=E\left[x^{2}\right]+E[x]^{2}$
- how much different from the average
- example: rolling a die
- expected value: $E[x]=(1+2+3+4+5+6) / 6=3.5$
- variance: $\sigma^{2}[x]=\ldots=2.917$

estimating expected values

- to estimate the expected value of a variable
- choose a set of random values based on the probability
- average their results

$$
E[x] \approx \frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- larger N give better estimate
- example: rolling a die
- roll 3 times: $\{3,1,6\} \rightarrow E[x] \approx(3+1+6) / 3=3.33$
- roll 9 times: $\{3,1,6,2,5,3,4,6,2\} \rightarrow E[x] \approx 3.51$

(strong) law of large numbers

- by taking infinitely many samples, the error between the estimate and the expected value is statistically zero
- the estimate will converge to the right value

$$
\mathrm{P}\left[E[x]=\lim _{N \rightarrow \inf } \frac{1}{N} \sum_{i=1}^{N} x_{i}\right]=1
$$

continuous random variable

- random variable: x
- values: $x \in[a, b]$
- probability density function: $x \sim p$
- property: $\int_{a}^{b} p(x) d x=1$
- probability that variable has value $x: p(x)$

uniformly distributed random variable

- p is the same everywhere in the interval
- $p(x)=$ const and $\int_{a}^{b} p(x) d x=1$ implies

$$
p(x)=\frac{1}{b-a}
$$

expected value and variance

- expected value: $E[x]=\int_{a}^{b} x p(x) d x$

$$
\circ E[g(x)]=\int_{a}^{b} g(x) p(x) d x
$$

- variance: $\sigma^{2}[x]=\int_{a}^{b}(x-E[x])^{2} p(x) d x$

$$
\sigma^{2}[g(x)]=\int_{a}^{b}(g(x)-E[g(x)])^{2} p(x) d x
$$

- estimating expected values: $E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)$

multidimensional random variables

- everything works fine in multiple dimensions
- but it is often hard to precisely define domain
- except in simple cases

$$
E[g(\mathbf{x})]=\int_{\mathbf{x} \in D} g(\mathbf{x}) p(\mathbf{x}) d A_{\mathbf{x}}
$$

deterministic numerical integration

- split domain in set of fixed segments
- sum function values times size of segments

$$
I=\int_{a}^{b} f(x) d x
$$

$$
I \approx \sum_{j} f\left(x_{j}\right) \Delta x
$$

monte carlo numerical integration

- need to evaluate: $I=\int_{a}^{b} f(x) d x$
- by definition: $E[g(x)]=\int_{a}^{b} g(x) p(x) d x$
- can be estimated as: $E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g\left(x_{i}\right)$
- by substitution: $g(x)=f(x) / p(x)$

$$
I=\int_{a}^{b} \frac{f(x)}{p(x)} p(x) d x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

monte carlo numerical integration

intuition: compute the area randomly and average the results

$$
I=\int_{a}^{b} f(x) d x \quad I \approx \bar{I}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}
$$

monte carlo numerical integration

formally, we can prove that

$$
\bar{I}=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)} \quad \Rightarrow \quad E[\bar{I}]=E[g(x)]
$$

meaning that if we were to try multiple times to evaluate the integral using our new procedure, we would get, on average, the same result
variance of the estimate: $\sigma^{2}[\bar{I}]=\frac{1}{N} \sigma^{2}[g(x)]$

example: integral of constant function

analytic integration

$$
I=\int_{a}^{b} f(x) d x=\int_{a}^{b} k d x=k(b-a)
$$

monte carlo integration

$$
\begin{aligned}
I & =\int_{a}^{b} f(x) d x=\int_{a}^{b} k d x \approx \\
& \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{p\left(x_{i}\right)}=\frac{1}{N} \sum_{i=1}^{N} k(b-a)= \\
& =\frac{N}{N} k(b-a)=k(b-a)
\end{aligned}
$$

example: computing π

take the square $[0,1]^{2}$ with a quarter-circle in it

$$
\begin{aligned}
A_{\text {qcircle }} & =\int_{0}^{1} \int_{0}^{1} f(x, y) d x d x \\
f(x, y) & = \begin{cases}1 & (x, y) \in \text { qcircle } \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

example: computing π

estimate area of quarter-circle by tossing point in the plane and evaluating f

$$
A_{\text {qcircle }} \approx \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

example: computing π

- by definition: $A_{\text {qcircle }}=\pi / 4$
- numerical estimation of π
- without any trig functions

$$
\pi \approx \frac{4}{N} \sum_{i=1}^{N} f\left(x_{i}, y_{i}\right)
$$

monte carlo numerical integration

- works in any dimension!
- need to carefully pick the points
- need to properly define the pdf
- hard for complex domain shapes
- e.g., how to uniformly sample a sphere?
- works for badly-behaving functions!

$$
I=\int_{\mathbf{x} \in D} f(\mathbf{x}) d A_{\mathbf{x}} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x})}{p(\mathbf{x})}
$$

monte carlo numerical integration

- expected value of the error is $O(1 / \sqrt{N})$
- convergence does not depend on dimensionality
- deterministic integration is hard in high dimensions

