using monte carlo integration to solve the rendering equation

dr. jon denning
assistant professor of cse
taylor university

frank s. brenneman lecture series
the rendering equation

computer-generated photo-realistic images are created by accurately simulating the way light interacts with the world.

Good simulations require good modeling of lighting, materials, lenses, and the transport of light.

(not photo-real example)
rendering systems, such as a ray tracer or path tracer, use the rendering equation to describe how the light bounces around the virtual scene until it enters the camera's lens

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} \rho(x, \omega_i, \omega_o) L_i(x, \omega_i)(\omega_i \cdot n) d\omega_i \]

the rendering equation describes the total amount of light \(L_o \) leaving from a point \(x \) along a particular direction \(\omega_o \) given a function for all incoming light \(L_i \) about the hemisphere \(\Omega \) and a reflectance function \(\rho \)
the rendering equation

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} \rho(x, \omega_i, \omega_o)L_i(x, \omega_i)(\omega_i \cdot n)d\omega_i \]

\(L_e\) and \(\rho\) are relatively easy to define well, and the equation is fairly straightforward, yet the results from such a simple equation can be quite stunning.
solving the rendering equation

so, how do we (efficiently) solve this?

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} \rho(x, \omega_i, \omega_o)L_i(x, \omega_i)(\omega_i \cdot n)d\omega_i \]

notes:

- \(\Omega \) is 2D domain (hemisphere)
- the equation is recursively defined \((L_o, L_i) \)
- the function \(L_i \) is not well-behaved in general
 - discontinuous
solving the rendering equation

so, how do we (efficiently) solve this?

\[L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{\Omega} \rho(x, \omega_i, \omega_o)L_i(x, \omega_i)(\omega_i \cdot n)d\omega_i \]

monte carlo integration to the rescue!
in the interest of time, the focus of this talk is to provide intuition and motivation, not necessarily for a deeper understanding of the application of statistics or in computer graphics

just sit back and enjoy
integrals and averages

integral of a function over a domain

\[\int_{x \in D} f(x) \, dA_x \]

"size" of a domain

\[A_D = \int_{x \in D} dA_x \]

average of a function over a domain

\[\frac{\int_{x \in D} f(x) \, dA_x}{\int_{x \in D} dA_x} = \frac{\int_{x \in D} f(x) \, dA_x}{A_D} \]
integrals and averages examples

average "daily" snowfall in Hillsboro last year

- domain: year, time interval (1D)
- integration variable: "day" of the year
- function: snowfall of "day"

\[
\int_{\text{day} \in \text{year}} \frac{s(\text{day}) \text{d}l\text{ength}(\text{day})}{\text{length}(\text{year})}
\]
integrals and averages examples

"today" average snowfall in Kansas

- domain: Kansas, surface (2D)
- integration variable: "location" in Kansas
- function: snowfall of "location"

\[\int_{\text{location} \in \text{Kansas}} s(\text{location}) \frac{d\text{area}(\text{location})}{\text{area}(\text{location})} \]
integrals and averages examples

"average" snowfall in Kansas per day this year

- domain: Kansas \(\times \) year, area \(\times \) time (3D)
- integration variables: "location" and "day" in Kansas this year
- function: snowfall of "location" and "day"

\[
\int_{\text{day} \in \text{year}} \int_{\text{loc} \in \text{KS}} \frac{s(\text{loc}, \text{day}) \text{darea}(\text{loc}) \text{dl}\text{ength}(\text{day})}{\text{area}(\text{loc}) \text{length}(\text{day})}
\]
discrete random variable

- random variable: x
- values: $x_0, x_1, ..., x_n$
- probabilities: $p_0, p_1, ..., p_n$, where $\sum_{j=1}^{n} p_j = 1$
- example: rolling a die
 - values: $x_1 = 1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 5, x_6 = 6$
 - probabilities: $p_1 = p_2 = p_3 = p_4 = p_5 = p_6 = \frac{1}{6}$
expected value and variance

- expected value: \(E[x] = \sum_{j=1}^{n} v_j p_j \)
 - average value of the variable
- variance: \(\sigma^2[x] = E[(x - E[x])^2] = E[x^2] + E[x]^2 \)
 - how much different from the average
- example: rolling a die
 - expected value: \(E[x] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5 \)
 - variance: \(\sigma^2[x] = . . . = 2.917 \)
estimating expected values

- to estimate the expected value of a variable
 - choose a set of random values based on the probability
 - average their results

\[E[x] \approx \frac{1}{N} \sum_{i=1}^{N} x_i \]

- larger \(N \) give better estimate
- example: rolling a die

 - roll 3 times: \(\{3, 1, 6\} \rightarrow E[x] \approx (3 + 1 + 6)/3 = 3.33 \)
 - roll 9 times: \(\{3, 1, 6, 2, 5, 3, 4, 6, 2\} \rightarrow E[x] \approx 3.51 \)
(strong) law of large numbers

- by taking infinitely many samples, the error between the estimate and the expected value is statistically zero
 - the estimate will converge to the right value

\[
P \left[E[x] = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} x_i \right] = 1
\]
continuous random variable

- random variable: x
- values: $x \in [a, b]$
- probability density function: $x \sim p$
 - property: $\int_a^b p(x)dx = 1$
- probability that variable has value x: $p(x)$
uniformly distributed random variable

- p is the same everywhere in the interval
 - $p(x) = \text{const}$ and $\int_a^b p(x)dx = 1$ implies
 \[
p(x) = \frac{1}{b - a}
 \]
expected value and variance

- expected value: \(E[x] = \int_a^b xp(x)dx \)
 - \(E[g(x)] = \int_a^b g(x)p(x)dx \)
- variance: \(\sigma^2[x] = \int_a^b (x - E[x])^2 p(x)dx \)
 - \(\sigma^2[g(x)] = \int_a^b (g(x) - E[g(x)])^2 p(x)dx \)
- estimating expected values: \(E[g(x)] \approx \frac{1}{N} \sum_{i=1}^N g(x_i) \)
multidimensional random variables

- everything works fine in multiple dimensions
 - but it is often hard to precisely define domain
 - except in simple cases

\[E[g(x)] = \int_{x \in D} g(x)p(x)dA_x \]
deterministic numerical integration

- split domain in set of fixed segments
- sum function values times size of segments

\[I = \int_{a}^{b} f(x) \, dx \quad I \approx \sum_{j} f(x_j) \Delta x \]
Monte Carlo Numerical Integration

- Need to evaluate: $I = \int_a^b f(x)\,dx$
- By definition: $E[g(x)] = \int_a^b g(x)p(x)\,dx$
- Can be estimated as: $E[g(x)] \approx \frac{1}{N} \sum_{i=1}^{N} g(x_i)$
- By substitution: $g(x) = \frac{f(x)}{p(x)}$

$$I = \int_a^b \frac{f(x)}{p(x)} p(x)\,dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)}$$
monte carlo numerical integration

intuition: compute the area randomly and average the results

\[I = \int_a^b f(x) \, dx \]

\[I \approx \bar{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \]

\[f(x) \]

\[a \quad b \]
Monte Carlo numerical integration

formally, we can prove that

\[
\bar{I} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} \quad \Rightarrow \quad E[\bar{I}] = E[g(x)]
\]

meaning that if we were to try multiple times to evaluate the integral using our new procedure, we would get, on average, the same result.

variance of the estimate:

\[
\sigma^2[\bar{I}] = \frac{1}{N} \sigma^2[g(x)]
\]
example: integral of constant function

analytic integration

$$I = \int_{a}^{b} f(x) \, dx = \int_{a}^{b} k \, dx = k(b - a)$$

monte carlo integration

$$I \approx \int_{a}^{b} f(x) \, dx = \int_{a}^{b} k \, dx \approx$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{p(x_i)} = \frac{1}{N} \sum_{i=1}^{N} k(b - a) =$$

$$= \frac{N}{N} k(b - a) = k(b - a)$$
example: computing π

take the square $[0, 1]^2$ with a quarter-circle in it

$$A_{qcircle} = \int_0^1 \int_0^1 f(x, y)\,dx\,dx$$

$$f(x, y) = \begin{cases} 1 & (x, y) \in qcircle \\ 0 & \text{otherwise} \end{cases}$$
example: computing π

estimate area of quarter-circle by tossing point in the plane and evaluating f

$$A_{qcircle} \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i)$$
example: computing π

- by definition: $A_{\text{circle}} = \pi/4$
- numerical estimation of π
 - without any trig functions

$$\pi \approx \frac{4}{N} \sum_{i=1}^{N} f(x_i, y_i)$$
monte carlo numerical integration

- works in any dimension!
 - need to carefully pick the points
 - need to properly define the pdf
 - hard for complex domain shapes
 - e.g., how to uniformly sample a sphere?
- works for badly-behaving functions!

\[
I = \int_{x \in D} f(x) dA_x \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(x)}{p(x)}
\]
monte carlo numerical integration

- expected value of the error is $O(1/\sqrt{N})$
 - convergence does not depend on dimensionality
 - deterministic integration is hard in high dimensions