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the rendering equation

computer-generated photo-realistic images are created by
accurately simulating the way light interacts with the world

good simulations require good modeling of lighting, materials,
lenses, and the transport of light

(not photo-real example)
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the rendering equation

rendering systems, such as a ray tracer or path tracer, use the
rendering equation to describe how the light bounces around the
virtual scene until it enters the camera's lens

the rendering equation describes the total amount of light ( )
leaving from a point ( ) along a particular direction ( ) given a
function for all incoming light ( ) about the hemisphere ( ) and a
reflectance function ( )

(x, ) = (x, ) + ρ(x, , ) (x, )( ⋅ n)dLo ωo Le ωo ∫Ω
ωi ωo Li ωi ωi ωi
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x ωo

Li Ω
ρ
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the rendering equation

 and  are relatively easy to define well, and the equation is fairly
straight-forward, yet the results from such a simple equation can
be quite stunning

(x, ) = (x, ) + ρ(x, , ) (x, )( ⋅ n)dLo ωo Le ωo ∫Ω
ωi ωo Li ωi ωi ωi

Le ρ
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https://artstation.com/artwork/daniel-craig-portrait
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http://jwpark.cgsociety.org/art/portraits-maya-mental-rendering-ray-linear-zbrush-workflow-photoshop-mentalray-fibermesh-portrait-sylvia-3d-1246332
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http://www.evermotion.org/vbulletin/showthread.php?106685-close-up-images
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http://www.evermotion.org/vbulletin/showthread.php?106685-close-up-images
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http://www.evermotion.org/vbulletin/showthread.php?106685-close-up-images


solving the rendering equation

so, how do we (efficiently) solve this?

notes:

 is 2D domain (hemisphere)

the equation is recursively defined ( , )

the function  is not well-behaved in general

discontinuous

(x, ) = (x, ) + ρ(x, , ) (x, )( ⋅ n)dLo ωo Le ωo ∫Ω
ωi ωo Li ωi ωi ωi

Ω
Lo Li
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solving the rendering equation

so, how do we (efficiently) solve this?

monte carlo integration to the rescue!

(x, ) = (x, ) + ρ(x, , ) (x, )( ⋅ n)dLo ωo Le ωo ∫Ω
ωi ωo Li ωi ωi ωi
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note

in the interest of time, the focus of this talk is to provide intuition
and motivation, not necessarily for a deeper understanding of the
application of statistics or in computer graphics

just sit back and enjoy
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integrals and averages

integral of a function over a domain

"size" of a domain

average of a function over a domain

f (x)d∫x∈D
Ax

= dAD ∫x∈D
Ax

=
f (x)d∫x∈D Ax

d∫x∈D Ax

f (x)d∫x∈D Ax

AD

13



integrals and averages examples

average "daily" snowfall in Hillsboro last year

domain: year, time interval (1D)

integration variable: "day" of the year

function: snowfall of "day"

s(day)dlength(day)∫day∈year

length(year)
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integrals and averages examples

"today" average snowfall in Kansas

domain: Kansas, surface (2D)

integration variable: "location" in Kansas

function: snowfall of "location"

s(location)darea(location)∫location∈Kansas

area(location)
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integrals and averages examples

"average" snowfall in Kansas per day this year

domain: Kansas  year, area  time (3D)

integration variables: "location" and "day" in Kansas this year

function: snowfall of "location" and "day"

× ×

s(loc, day)darea(loc)dlength(day)∫day∈year ∫loc∈KS

area(loc)length(day)
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discrete random variable

random variable: 

values: , , ..., 

probabilities: , , ..., , where 

example: rolling a die

values: , , , , , 

probabilities: 

x
x0 x1 xn

p0 p1 pn = 1∑n
j=1 pj

= 1x1 = 2x2 = 3x3 = 4x4 = 5x5 = 6x6

= = = = = =p1 p2 p3 p4 p5 p6
1
6
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expected value and variance

expected value: 

average value of the variable

variance: 

how much different from the average

example: rolling a die

expected value: 

variance: 

E[x] = ∑n
j=1 vjpj

[x] = E[(x − E[x] ] = E[ ] + E[xσ2 )2 x2 ]2

E[x] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5

[x] = . . . = 2.917σ2
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estimating expected values

to estimate the expected value of a variable

choose a set of random values based on the probability

average their results

larger  give better estimate

example: rolling a die

roll 3 times: 

roll 9 times: 

E[x] ≈
1
N ∑

i=1

N

xi

N

{3, 1, 6} → E[x] ≈ (3 + 1 + 6)/3 = 3.33
{3, 1, 6, 2, 5, 3, 4, 6, 2} → E[x] ≈ 3.51
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(strong) law of large numbers

by taking infinitely many samples, the error between the
estimate and the expected value is statistically zero

the estimate will converge to the right value

P [E[x] = ] = 1lim
N→inf

1
N ∑

i=1

N

xi
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continuous random variable

random variable: 

values: 

probability density function: 

property: 

probability that variable has value : 

x
x ∈ [a, b]

x ∼ p

p(x)dx = 1∫ b
a

x p(x)
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uniformly distributed random variable

 is the same everywhere in the interval

 and  implies

p

p(x) = const p(x)dx = 1∫ b
a

p(x) =
1

b − a
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expected value and variance

expected value: 

variance: 

estimating expected values: 

E[x] = xp(x)dx∫ b
a

E[g(x)] = g(x)p(x)dx∫ b
a

[x] = (x − E[x] p(x)dxσ2 ∫ b
a )2

[g(x)] = (g(x) − E[g(x)] p(x)dxσ2 ∫ b
a )2

E[g(x)] ≈ g( )1
N ∑

N
i=1 xi
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multidimensional random variables

everything works fine in multiple dimensions

but it is often hard to precisely define domain

except in simple cases

E[g(x)] = g(x)p(x)d∫x∈D
Ax
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deterministic numerical integration

split domain in set of fixed segments

sum function values times size of segments

I = f (x)dx I ≈ f ( )Δx∫
b

a ∑
j

xj
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monte carlo numerical integration

need to evaluate: 

by definition: 

can be estimated as: 

by substitution: 

I = f (x)dx∫ b
a

E[g(x)] = g(x)p(x)dx∫ b
a

E[g(x)] ≈ g( )1
N ∑

N
i=1 xi

g(x) = f (x)/p(x)

I = p(x)dx ≈∫
b

a

f (x)
p(x)

1
N ∑

i=1

N f ( )xi

p( )xi
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monte carlo numerical integration

intuition: compute the area randomly and average the results

I = f (x)dx I ≈ =∫
b

a
Ī

1
N ∑

i=1

N f ( )xi

p( )xi
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monte carlo numerical integration

formally, we can prove that

meaning that if we were to try multiple times to evaluate the
integral using our new procedure, we would get, on average, the
same result

variance of the estimate: 

= ⇒ E[ ] = E[g(x)]Ī
1
N ∑

i=1

N f ( )xi

p( )xi
Ī

[ ] = [g(x)]σ2 Ī 1
N σ2
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example: integral of constant function

analytic integration

monte carlo integration

I = f (x)dx = kdx = k(b − a)∫
b

a ∫
b

a

I = f (x)dx = kdx ≈∫
b

a ∫
b

a

≈ = k(b − a) =
1
N ∑

i=1

N f ( )xi

p( )xi

1
N ∑

i=1

N

= k(b − a) = k(b − a)
N
N
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example: computing 

take the square  with a quarter-circle in it

π
[0, 1]2

Aqcircle

f (x, y)

=

=

f (x, y)dxdx∫
1

0 ∫
1

0

{ 1
0

(x, y) ∈ qcircle
otherwise
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example: computing 

estimate area of quarter-circle by tossing point in the plane and
evaluating 

π

f

≈ f ( , )Aqcircle
1
N ∑

i=1

N

xi yi
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example: computing 

by definition: 

numerical estimation of 

without any trig functions

π
= π/4Aqcircle

π

π ≈ f ( , )
4
N ∑

i=1

N

xi yi
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monte carlo numerical integration

works in any dimension!

need to carefully pick the points

need to properly define the pdf

hard for complex domain shapes

e.g., how to uniformly sample a sphere?

works for badly-behaving functions!

I = f (x)d ≈∫x∈D
Ax

1
N ∑

i=1

N f (x)
p(x)
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monte carlo numerical integration

expected value of the error is 

convergence does not depend on dimensionality

deterministic integration is hard in high dimensions

O(1/ )N‾‾√
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